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Abstract. In this paper, a machine learning-based system that could provide automated short-term solar 

flares prediction is presented. This system accepts two sets of inputs: McIntosh classification of sunspot 

groups and solar cycle data. In order to establish a correlation between solar flares and sunspot groups, 

the system explores the publicly available solar catalogues from the National Geophysical Data Centre 

(NGDC) to associate sunspots with their corresponding flares based on their timing and NOAA numbers. 

The McIntosh classification for every relevant sunspot is extracted and converted to a numerical format 

that is suitable for machine learning algorithms. Using this system we aim to predict if a certain sunspot 

class at a certain time is likely to produce a significant flare within six hours time and whether this flare is 

going to be an X or M flare. Machine learning algorithms such as Cascade-Correlation Neural Networks 

(CCNN), Support Vector Machines (SVM) and Radial Basis Function Networks (RBFN), are optimised 

and then compared to determine the learning algorithm that would provide the best prediction 

performance. It is concluded that SVM provides the best performance for predicting if a McIntosh 

classified sunspot group is going to flare or not but CCNN is more capable of predicting the class of the 

flare to erupt. A hybrid system that combines SVM and CCNN is suggested for future use. 

1. Introduction 

Solar activity is the driver of space weather. Thus it is important to be able to predict the 

violent eruptions such as coronal mass ejections (CME) and solar flares (Koskinen et 

al., 1999). An efficient space weather forecasting system should analyse the recent solar 

data and provide reliable predictions of forthcoming solar activities and their possible 

effects on Earth. Space weather is defined by the U.S. National Space Weather Program 

(NSWP) as “conditions on the Sun and in the solar wind, magnetosphere, ionosphere, 

and thermosphere that can influence the performance and reliability of space-borne and 

ground-based technological systems and can endanger human life or health”. The 

importance of understanding space weather is increasing for two reasons. First the way 

solar activity affects life on Earth. Second we rely more and more on communications 

and power systems, both of which are vulnerable to space weather.  

Space weather forecasting is an emerging science that is facing many challenges. 

Some of these challenges are the automated definition, classification and representation 

of solar features and the establishing of an accurate correlation between the occurrence 

of solar activities (e.g., solar flares and CME) and solar features (e.g., sunspots, 

filaments and active regions) observed in various wavelengths. 

In order to predict solar activities we need to use real-time, high-quality data and 

data processing techniques (Wang et al., 2003) . Solar flares research has shown that 

flares are mostly related to sunspots and active regions (Liu et al., 2005; Zirin and 

Liggett, 1987; Shi and Wang, 1994). In this paper we aim to design an automated 

system that uses machine learning algorithms to provide efficient short-term prediction 

of significant flares. The training of machine learning algorithms is based on associating 

sunspots with their corresponding flares and on the numerical simulation of the solar 
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cycle. In the near future we intend to extend the work reported in this paper and 

combine it with automated image processing algorithms that will analyse solar images 

in real-time mode. Solar features will be extracted and classified in real-time and then 

fed to the machine learning algorithms reported here to provide real-time automated 

short-term prediction of solar flares.  

There have been noticeable developments recently in solar imaging and the 

automated detection of various solar features, by: Gao et al. (2002), Turmon et al. 

(2002), Shih and Kowalski (2003), Benkhalil et al. (2003), Lefebvre and Rozelot (2004) 

and Qahwaji and Colak (2006a). Despite the recent advances in solar imaging, machine 

learning and data mining have not been widely applied to solar data. However, there is 

no machine learning algorithm that is known to provide the “best” learning performance 

especially in the solar domain. One of the early attempts to predict solar activity was 

reported in Calvo et al. (1995). However in Calvo et al. (1995) solar activity was 

represented in terms of the Wolf number, not in terms of flares or CMEs. A recent 

survey describing the imaging techniques used for solar feature recognition is presented 

in Zharkova et al. (2005). Borda et al. (2002) described a method for the automatic 

detection of solar flares using the Multi-Layer Perceptron (MLP) with back-propagation 

training rule and used supervised learning technique that required large number of 

iterations. Qu et al. (2003) compared the classification performance for features 

extracted from solar flares using Radial Basis Function Networks (RBFN), Support 

Vector Machines (SVM) and MLP methods. Each flare is represented using nine 

features. However, these features provide no information about the position, size and 

classification of solar flares. Neural Networks (NNs) were used in Zharkova and 

Schetinin (2003) for filament recognition in solar images and in Qahwaji and Colak 

(2006a) NNs were used after image segmentation to verify the regions of interest, which 

were solar filaments. 

There is also some work reported on the correlation between sunspot 

classifications and flare occurrences and prediction. NOAA Space Environment 

Laboratory designed an expert system called THEO (McIntosh, 1990) that uses flare 

rates of sunspot groups classified by the McIntosh scheme, dynamical properties of 

sunspot growth, rotation, shear and previous flare activity, for assigning a 24 hour 

probabilities for X-ray flares. The system was subjective because the forecast decision 

rules were incorporated by a human expert and had not been evaluated statistically. In 

Sammis et al. (2000), eight years of active region observations from the US Air 

Force/Mount Wilson data set, supplied by the NOAA World Data Centre were studied 

to explore the relation between δ sunspots and large flares. They confirmed Künzel 
(1960)’s findings that regions classified as βγδ produce more and larger flares than 
other regions of comparable size. In particular, they concluded that each region larger 

than 1000 millionths of hemisphere and classified as βγδ had nearly 40% probability of 
producing X1 class flares or even bigger flares. Bornmann and Shaw (1994) used 

multiple linear regression analysis to derive the effective solar flare contributions of 

each McIntosh classification parameters. They concluded that the original seventeen 

McIntosh Classification parameters can be reduced to ten and still reproduce the 

observed flare rates. Gallagher et al. (2002) provided a method for finding the flaring 

probability of an active region in a given day using Poisson statistics and historical 

averages of flare numbers for McIntosh classifications. Wheatland (2004) introduced a 

Bayesian approach to flare prediction. This approach can be used to improve or refine 

the initial prediction of big flares during a subsequent period of time using the flaring 

record of an active region together with phenomenological rules of flare statistics. To 

construct the flaring records for an active region, all the flares (whether significant or 
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not) are considered. This method was tested on limited dataset (i.e., ten flaring days) but 

the author made interesting points on how it can be adapted to handle real-time data. 

More recently, Ternullo et al. (2006) presented a statistical analysis carried out by 

correlating sunspot group data collected at the INAF-Catania Astrophysical Observatory 

with data of M- and X- class flares obtained by the GOES-8 satellite in the soft X-ray 

range during the period from January 1996 till June 2003. It was found that the flaring 

probability of sunspots increases slightly with the sunspot age as the flaring sunspots 

have longer life times compared to non-flaring ones. These previous works demonstrate 

that there is a clear correlation between sunspot classification and the flaring 

probability. However, this relation hasn’t been verified on large-scale data using 

automated machine learning algorithms. In this work, we aim to design a fully 

automated system that can analyse all the reported flares and sunspots for the last 

fourteen years to explore the degree of correlation and provide an accurate prediction 

using time-series data. The work reported in this paper is a first step toward constructing 

a real-time, automated, web compliant system that will extract the latest solar images in 

real-time and provide automated prediction for the occurrence of big flares within six 

hours time period.   

 

 This paper is organised as follows: the solar data used in this paper are described 

in Section 2. Machine learning algorithms are discussed in Section 3. The 

implementation of the system and experimental results are reported in Section 4. 

Finally, the concluding remarks are given in Section 5. 

2. Data 

In this work, we have used data from the publicly available sunspot group catalogue and 

the solar flare catalogue. Both catalogues are provided by the National Geophysical 

Data Centre (NGDC)
1
. NGDC keeps record of data from several observatories around 

the world and holds one of the most comprehensive publicly available databases for 

solar features and activities. 

Flares are classified according to their X-ray brightness in the wavelength range 

from one to eight Angstroms. C, M, and X class flares can affect earth. C-class flares are 

moderate flares with few noticeable consequences on Earth (i.e., minor geomagnetic 

storms). M-class flares are large; they generally cause brief radio blackouts that affect 

Earth's polar regions by causing major geomagnetic storms. X-class flares can trigger 

planet-wide radio blackouts and long-lasting radiation storms. The NGDC flare 

catalogue (Figure 1) provides information about dates, starting and ending times for 

flare eruptions, location, X-ray classification, and the NOAA number for the active 

regions that are associated with the detected flares.  

The NGDC sunspot catalogue (Figure 1) holds records of many solar 

observatories around the world that have been tracking sunspot regions and supplying 

their date, time, location, physical properties, and classification. Two classification 

systems exist for sunspots: McIntosh and Mt. Wilson. McIntosh classification depends 

on the size, shape and spot density of sunspots, while the Mt. Wilson classification 

(Hale et al., 1919) is based on the distribution of magnetic polarities within spot groups 

(Greatrix and Curtis, 1973). In this study we used the McIntosh classification which is 

the standard for the international exchange of solar geophysical data. It is a modified 

version of the Zurich classification system developed by Waldmeier. The general form 

of the McIntosh classification is Zpc where, Z is the modified Zurich class, p is the type 

                                                 
1
 ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/, last access: 2006 
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of spot, and c is the degree of compactness (distribution of sunspots) in the interior of 

the group.  

These two catalogues are analyzed by a C++ computer program that we have 

created, in order to associate sunspots with their corresponding flares using their timing 

and location information. This computer program provides training and testing data sets 

for machine learning algorithms using these associations. More information is provided 

about the program and data sets in section 4. 

3. Machine Learning Algorithms 

In this work, Cascade-Correlation Neural Networks (CCNN), Support Vector Machines 

(SVM) and Radial Basis Function Networks (RBFN) are used and compared for flare 

prediction. CCNN and RBFN are used because of their efficient performance in 

applications involving classification and time-series prediction (Frank et al., 1997). In 

our previous work Qahwaji and Colak (2006b) the performance of several NN 

topologies and learning algorithms was compared and it was concluded that CCNN 

provides better association between solar flares and sunspot classes. It is one of the 

recent trends in machine learning to compare the performance of SVM and neural 

networks. The work reported in Acir and Guzelis (2004), Pal and Mather (2004), Huang 

et al. (2004), and Distante et al. (2003) though not related to the prediction of solar 

activities, has shown that SVM have outperformed neural networks in the classification 

tasks for different applications. Similar performance for SVM were reported for flares 

detection in Qu et al. (2003), where statistical features were extracted from solar images 

and were trained using MLP, RBFN and SVM for automatic flares detection. Many 

existing references, such as Qu et al. (2003), provide detailed description for SVM and 

RBF. However, the same is not true for CCNN, so we have decided to provide more 

details for CCNN. 

3.1. CASCADE-CORRELATION NEURAL NETWORKS (CCNN) 

The training of Backpropagation neural networks is considered to be slow because of 

the step-size problem and the moving target problem (Fahlmann and Lebiere, 1989). To 

overcome these problems cascade neural networks were developed. The topology of 

these networks is not fixed. The supervised training begins with a minimal network 

topology. New hidden nodes are added gradually to create a multi-layer structure. The 

new hidden nodes are added to maximize the magnitude of the correlation between the 

new node’s output and the residual error signal we are trying to eliminate. The weights 

of every new hidden node are fixed and never changed later, hence making it a 

permanent feature-detector in the network. This feature detector can then produce 

outputs or create other more complex feature detectors (Fahlmann and Lebiere, 1989) .  

In CCNN, the number of input nodes is determined based on the input features, 

while the number of output nodes is determined based on the number of different output 

classes. The learning of CCNN starts with no hidden nodes. The direct input-output 

connections are trained using the entire training set with the aid of the backpropagation 

learning algorithm. Hidden nodes are then added gradually and every new node is 

connected to every input node and to every pre-existing hidden node. Training is carried 

out using the training vector and the weights of the new hidden nodes are adjusted after 

each pass (Fahlmann and Lebiere, 1989) .  

However, a major problem facing these networks is over-fitting the training data, 

especially when dealing with real-world problems (Smieja, 1993). Over-fitting usually 
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occurs if the training data are characterized by many irrelevant and noisy features 

(Schetinin, 2003). On the other hand, the Cascade-Correlation architecture has several 

advantages. Firstly, it learns very quickly, at least 10 times faster than Back-propagation 

algorithms (Shet et al., 2005). Secondly, the network determines its own size and 

topology and it retains the structures it has built even if the training set changes 

(Fahlmann and Lebiere, 1989). Thirdly, it requires no back-propagation of error signals 

through the connections of the network (Fahlmann and Lebiere, 1989). Finally, this 

structure is useful for incremental learning in which new information is added to the 

already trained network (Shet et al., 2005).   

3.2. SUPPORT VECTOR MACHINE (SVM) 

SVMs are becoming powerful tools for solving a variety of learning and function 

estimation problems. Compared to neural networks, SVMs have a firm statistical 

foundation and are guaranteed to converge to a global minimum during training. They 

are also considered to have better generalisation capabilities than neural networks. 

SVMs have been shown to outperform neural networks in a number of applications (Qu 

et al., 2003; Acir and Guzelis, 2004; Pal and Mather, 2004; Huang et al., 2004,; 

Distante et al., 2003). SVM are a learning algorithm that is based on the statistical 

learning theory. It was developed by Vapnik (1999) and uses the structural risk 

minimisation principle. Given an input vector, the SVM classifies it into one of two 

classes. This is done by seeking the optimal separating hyperplane that provides 

efficient separation for the data and maximises the margin, i.e. it maximises the distance 

between the closest vectors in both classes to the hyper plane. This is of course with the 

assumption that the data are linearly separable. For the case when the data are not 

linearly separable, SVM will map the data into a higher dimensional feature space 

where data can become linearly separable. This is done by using kernel functions. More 

details on SVM can be found in Qu et al. (2003) and Vapnik (1999) 

3.3. RADIAL BASIS FUNCTIONS NETWORKS (RBFN) 

RBFN are powerful interpolation techniques that can be efficiently applied in 

multidimensional space. The RBFN approach to classification is based on curve fitting. 

Learning is achieved when a multi-dimensional surface is found that can provide 

optimum separation of multi-dimensional training data. In general, RBFN can model 

continuous functions with reasonable accuracy. The radial basis functions are the set of 

functions provided by the hidden nodes that constitute an arbitrary “basis” for the input 

patterns (Qu et al., 2003). 

The training of the RBFN is usually simpler and shorter compared to other NNs. 

This is one of major advantages for using RBFN. However, greater computation and 

storage requirements for classification of inputs are usually required after the network is 

trained (Sutton and Barto, 1998). 

RBFN apply a mixture of supervised and unsupervised learning modes. The layer 

from input nodes to hidden nodes is unsupervised, while supervised learning exists in 

the layer from hidden nodes to output nodes. Non linear transformation exists from 

input to hidden space, while linear transformation exists from the hidden to the output 

space (Bishop, 1995). More details on the theory and implementation of RBFN can be 

found in Qu et al. (2003) and Sutton and Barto (1998) 
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4. Implementation and Results 

4.1 ASSOCIATING SUNSPOTS AND FLARES 

As illustrated previously, a C++ platform was created to access the NGDC sunspots and 

flares catalogues and to automatically associate all the X and M class flares with their 

corresponding sunspot groups. The correspondence was determined based on the 

location (i.e., same NOAA number) and timing information (maximum six hours time 

difference between the erupting flare and the time for which the classification of the 

associated sunspot group is reported). After finding all the associations, a numerical 

dataset is created for the machine learning algorithms.  

The whole process is described in the following steps: 

 

• Parse flare data from NGDC soft X-ray flare catalogues. 

• Parse sunspot group data from NGDC sunspot catalogues. 

• If an X- or M-class flare is found then try to identify its associated 

sunspot as follows: 

o If the NOAA number of the flare is specified in the flare 

catalogue then, 

� Search the sunspot catalogue to find the sunspot groups 

with the matching NOAA number with flare. 

� Find the time difference between the flare eruption time 

and the extracted sunspots time.  

� If the time difference is less than six hours then the flare 

record and the sunspot record are marked as being 

ASSOCIATED.  

� If there is more than one classification report for the flare-

associated sunspot group within six hours then choose the one 

with minimum time difference. 

• Get the sunspot groups that are not associated with any flare. 

o If no solar flares anywhere on the sun occur within one day after 

the classification of this sunspot group then it is marked as 

UNASSOCIATED. 

• Record all ASSOCIATED groups and their corresponding flare classes 

(An example for ASSOCIATED groups and flares is given in Figure 1).  

• Record UNASSOCIATED groups.  

• Create the data sets using McIntosh classes of groups and flare classes 

(Table I). 

 

4.2 CREATING THE INITIAL DATA SET    

We need to define appropriate numerical representations for the ASSOCIATED and 

UNASSOCIATED groups that were extracted earlier, because most machine learning 

algorithms deal with numbers. This means that we need to convert the McIntosh 

classification of every sunspot to a corresponding numerical value. To do so we will go 

back to the basics of McIntosh classification which is represented as Zpc, as explained 

earlier. There are seven classes under the Z part of classification (i.e., A, B, C, D, E, F, 

H), six classes under the p part (i.e., x, r, s, a, h, k) and four classes under the c part (i.e., 
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x, o, i, c). Hence, three numerical values are used to represent every sunspot group. To 

find these values the McIntosh classification for the sunspot group is divided into its 

three components and the class order is divided by the total number of classes for each 

component. As for the flare representation, two numerical values are used. The first 

value represents whether a significant flare occurs or not. This value becomes 0.9 if a 

significant flare occurs otherwise it is 0.1. Also if the flare is an X-class flare, it is 

represented by 0.9 and if it is an M-class flare, it is represented by 0.1. The numerical 

conversions of data sets are explained in more details in Table I.   

In this work, we have processed all the data of sunspots and flares for the periods 

from 01 Jan1992 till 31 Dec 2005. Our software has analysed the data related to 29343 

flares and 110241 sunspot groups and has managed to associate 1425 X- or M-class 

flares with their corresponding sunspot groups. To complete our data set we have 

processed the NGDC catalogues again to choose 1457 UNASSOCIATED sunspot 

groups based on the rules mentioned previously. Hence, the total number of samples 

used for our training and testing sets for machine learning is 2882.  

It is worth mentioning here that the total number of reported X- or M-class flares 

in NGDC flares catalogues is 1870 which is 6.3% of the total numbers of flares in this 

catalogue. However, out of these 1870 flares, only 1425 flares have NOAA numbers 

and are included in our study.  Veronig et al. (2002) has reported that about 10% of all 

soft X-ray flares are X- or M-class flares based on studying all flares between 1976 and 

2000. Comparing these findings with ours reveals that there is a 3.7% difference. The 

data used for Veronig et al. (2002) is more comprehensive as it consisted of  24 years 

data with three solar maxima, while we have extracted all the available NGDC data 

which is fourteen years data with only one solar maximum. Veronig et al. (2002) 

commented that “M- and X-class flares are less frequent and occur primarily during 

times of maximum solar activity” which may explain the 3.7% difference between the 

two findings. 

4.3 THE INITIAL TRAINING AND TESTING PROCESS 

4.3.1. Jack-Knife Technique 

For our study, all the machine learning training and testing experiments are carried out 

with the aid of the Jack-knife technique (Fukunaga, 1990). This technique is usually 

implemented to provide a correct statistical evaluation for the performance of the 

classifier when implemented on a limited number of samples. This technique divides the 

total number of samples into two sets: a training set and a testing set. Practically, a 

random number generator decides which samples are used for the training of the 

classifier and which are kept for testing it. The classification error depends mainly on 

the training and testing samples. For a finite number of samples, the error counting 

procedure can be used to estimate the performance of the classifier (Fukunaga, 1990). In 

each experiment, 80% of the samples were randomly selected and used for training 

while the remaining 20% were used for testing. Hence, the number of training samples 

is 2305, while 577 samples are used for the testing of the classifier.  

4.3.2. Initial Training and Testing 

To test the suitability of our data set for solar flare prediction, we started our 

experiments with training and testing of CCNN with our initial data set. This data set is 

divided into inputs and outputs as described in Section 4.2. The input set of our training 
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data consisted of three numerical values representing the McIntosh classification of the 

sunspot. The output set consisted of two nodes representing whether a flare is likely to 

occur and whether it is an X- or M-class flare. Several experiments based on the Jack-

knife technique were carried out and we found that the prediction rate for flares in the 

best case scenario was 72.9%. This indicated that a correlation existed between the 

input and output sets, but it is not high enough to provide reliable prediction of solar 

activities. It soon became obvious that our training data do not enable the classifier to 

create accurate discriminations between the input and output data. We concluded that 

using the McIntosh classification on its own is not enough and more discriminating data 

need to be added to the input data. Hence, we decided to associate the classified 

sunspots with the sunspot cycle. The new input is computed by finding the time of the 

sunspot with respect to the solar cycle. Our decision to include the timing information 

seemed to be supported by the fact that the rise and fall of solar activity coincides with 

the sunspot cycle (Pap et al., 1990) and by the fact that the M- and X- class flares 

mostly occur during times of maximum solar activity (Veronig et al., 2002). When the 

solar cycle is at a maximum, plenty of large active regions exist and many solar flares 

are detected. The number of active regions decreases as the Sun approaches the 

minimum part of its cycle (Pap et al,. 1990). More details are provided in the section to 

follow.  

4.3.3. Sunspot Cycle  

To determine the association between the classified sunspot group and their location on 

the solar cycle, it is important to use a mathematical model that could simulate the 

behaviour of the solar cycle. The model introduced by Hathaway et al. (1994), which is 

shown in Equation (1), can serve this purpose. This equation enables us to estimate the 

sunspot number for any given date and it enables the prediction of future values as well.  

                                   (1) 

 

In Equation (1), parameter ‘a’ represents the amplitude and is related to the rise of 

the cycle minimum, ‘b’ is related to the time in months from minimum to maximum; ‘c’ 

gives the asymmetry of the cycle; and ‘to’ denotes the starting time. More information 

about the derivation of Equation (1) can be found in Hathaway et al. (1994).  

To verify the accuracy of this model we have applied this model to the dates from 

01 Jan 1992 till 31 Dec 2005 and the average of the sunspot numbers for each month is 

shown in Figure 2. Using our software, we have extracted the sunspot data for the same 

period and found the actual average of monthly sunspot numbers. This value is also 

shown in Figure 2. Comparing both plots, it is obvious that Hathaway’s model provides 

reliable modelling for the rise and fall of the solar cycle. An alternative method to 

simulate the solar cycle could be the NN model introduced by Calvo et al. (1995). It is 

worth mentioning that in Lantos (2006) it is shown that all solar cycle prediction 

methods give, at least for one of the cycles, an error larger than 20 %, especially when 

cycles 13 to 23 are considered. Although Hathaway’s model represents the evolution of 

the solar cycle in a slightly rough manner, we used this model because of its easy 

implementation for the existing and future solar cycles. In addition, Hathaway’s model 

provides an automated numerical simulation for the behaviour of the solar cycle that can 

be used for studying the past, present and future evolution of the cycle. This is 

particularly important for any automated prediction system as certain sunspots group 

classes are more likely to flare at certain times. Hence, Hathaway’s model is integrated 
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into the training and testing phases of our machine learning algorithms. After the 

machine learning algorithms are trained, the timing information for any future sunspot 

can be simulated and fed to them to provide real-time flares prediction.  
 

4.3.4. The Final Data Set 

After using Hathaway’s model, the final training data set can be constructed. For each 

sample, the training data set consists of six numerical values: four input values and two 

output values. The first three input values represent the McIntosh classification of 

sunspots, while the last numerical value represents the simulated and normalized 

sunspot number based on Hathaway’s model. The simulated Hathaway’s value is 

normalised by dividing it by the actual or estimated number of sunspots at solar maxima 

to obtain a value between zero and one. The output set consists of two values: The first 

value is used to predict whether the sunspot is going to produce a significant flare or 

not. For performance evaluation purposes, this value will be referred to as the “Correct 

Flare Prediction (CFP)” value. The second value is used to determine whether the 

predicted flare is an X or M flare, and it will be referred to as the “Correct Flare Type 

Prediction (CFTP)”.  The final input and output data set is given in Table II. Also some 

examples from the data set are provided in Table III. 

4.4. FINAL TRAININGS AND TESTINGS FOR COMPARISONS 

In order to determine which machine learning algorithm is more suitable for our 

application, the prediction performance of CCNN, SVM and RBFN needs to be 

compared. However, these learning algorithms must be optimised before the actual 

comparison can take place. Learning algorithms are optimised to ensure that their best 

performances are achieved. In order to find the best parameters and/or topologies for the 

three learning algorithms initial training and testing experiments are applied. The results 

of these experiments are used to determine the optimum parameters and topology for 

every machine learning algorithm before it can be compared with other learning 

algorithms.  

4.4.1 Optimising the CCNN for final comparison 

In Qahwaji and Colak (2006b), it was proven that CCNN provides the optimum neural 

network performance for processing solar data in catalogues. However, many hidden 

nodes and just one hidden layer were used for training the network in Qahwaji and 

Colak (2006b). To simplify the topology of CCNN more experiments with two hidden 

layers are concluded in this work by changing the number of hidden nodes in each layer 

from one to ten.  At the end we managed to compare 100 different CCNN topologies 

based on the best CFP and CFTP. As can be seen from Figures 3 and 4, a CCNN with 

six hidden nodes in the first layer and four hidden nodes in the second layer gives the 

best results for CFP and CFTP. 

4.4.2 Optimising the SVM for final comparison 

For our work, the SVM experiments are carried out using the mySVM program 

developed by S.Ruping
2
. To optimise the performance of SVM the optimal kernel and 

its parameters need to be determined empirically. There are no known guidelines to 

choose them (Manik et al., 2004). In our work, many kernels were tested, such as the 

                                                 
2
  http://www-ai.informatik.uni-ortmund.de/SOFTWARE/MYSVM/index.html. 
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dot, polynomial, neural, radial, and Anova kernels, in order to choose the kernel that 

provides the best classification performance. After applying all these kernels we have 

concluded that the Anova kernel, which is shown in Equation (2), provides better results 

compared to all other kernels. Our findings match the findings of Manik et al. (2004).  

 

[ ]i i

i

( , ) = exp - ( )

d

k x y γ x - y
 
 
 
∑                                    (2) 

In Equation (2), the sum of exponential functions in x and y directions defines the 

Anova kernel. The shape of the kernel is controlled by the parameters γ (gamma) and d 

(exponential degree). To complete our SVM optimisation we need to determine these 

parameters for the Anova kernel. Two sets of experiments are carried out to determine 

these values. In the first experiments the value of γ is fixed at 50 and several SVM 

training experiments are concluded while changing the value of d from one to ten. For 

every new experiment the value of d is incremented and the prediction performance is 

recorded. The results for CFP and CFTP for different d values are shown in Figure 5. 

This figure shows that saturation is reached as the value of d exceeds eight. In the 

second experiments d is fixed at five and the value of γ is changed from 10 to 100. 

Figure 6 shows the results for CFP and CFTP for different γ values. The best results are 

reached for γ = 85. Based on the above, the Anova kernel is used with its d and γ 

parameters set to 8 and 85 consecutively.  

4.4.3 Optimising the RBFN for final comparison 

 A standard RBFN has a feed-forward structure consisting of three layers, an input 

layer, a nonlinear hidden layer and a linear output layer (Broomhead and Lowe, 1988). 

We have used MATLAB’s RBFN tool for our experiments. This tool adds nodes to the 

hidden layer of a RBFN until it reaches the specified learning goal, which is usually the 

mean squared error value. For our case this value is made equal to 0.001. To optimise 

the RBFN, we have run many simulations by increasing the number of hidden nodes 

from 3 to 60 in order to determine the optimum RBFN topology. Figure 7 shows the 

comparison for RBFN simulations with different number of hidden nodes. It is clear that 

the optimum number of hidden nodes is between 20 and 40 nodes. Hence, we have 

decided to use 30 hidden nodes for our future experiments. 

  

4.5. COMPARING THE PERFORMANCES 

After successfully optimising CCNN, SVM and RBFN, we are able to compare the 

prediction performance for the three learning algorithms. As illustrated previously, our 

CCNN has two hidden layers with six and four hidden nodes, our SVM uses the Anova 

kernel with d and γ parameters set to 8 and 85 respectively and our RBFN has 30 hidden 

nodes. All the training and testing experiments are carried out based on the statistical 

Jack-knife technique. For every experiment the Jack-knife technique is applied once to 

obtain the training and testing sets. For every experiment the same data sets are shared 

between CCNN, SVM and RBFN. Ten experiments are carried out and the results for 

CFP, CFTP, and training times are shown in Table IV. 

As it can be seen from Table IV, CCNN requires more training times compared to 

SVM and RBFN. On the other hand, SVM is very fast in training and on average it 

provides the best performance for CFP, which is 93.07%. The best performance for 

CFTP is provided by CCNN, which on average is 88.02%. It is worth noting that RBFN 
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outperforms SVM for CFTP as well. Figure 8 and Figure 9 shows the graphical 

comparison of CFP and CFTP performances for the three learning algorithms.  

 

5. Conclusions and Future Research 

In this paper, an empirical evaluation for three of the top machine learning algorithms 

for the automated prediction of solar flares is carried out. CCNN, RBFN and SVM are 

compared based on their topology, training times and most importantly their prediction 

accuracy. We used the publicly available solar catalogues from the National 

Geophysical Data Centre to associate the reported occurrences of M and X solar flares 

with the relevant sunspots that were classified manually and exist in the same NOAA 

region prior to flares occurrence.  

We have investigated all the reported flares and sunspots between 01 Jan 1992 

and 31 Dec 2005. Our software has managed to associate 1425 M and X soft X-ray 

flares with their corresponding sunspot groups. These 1425 flares were produced by 446 

different sunspot groups. Among these groups, NOAA region 10808 produced 30, 

region 10375 produced 29 and region 9393 produced 27 of the major flares. Our 

software was used to extract these findings and it can be used for statistical-based 

analysis of different aspects connected to flares occurrence.  

Our practical findings on the associations show that there is a direct relation 

between the eruptions of flares and certain McIntosh classes of sunspots such as Ekc, 

Fki and Fkc. Our findings are in accordance with McIntosh (1990), Warwick (1966), 

and Sakurai (1970). However we believe that our work is the first to introduce a fully 

automated computer platform that could verify this relation using machine learning. In 

its current version, our system can provide a few hours prediction in advance (i.e., up to 

six hours in advance) by analysing the latest sunspots data. 

We compared different machine learning algorithms to obtain the best prediction 

results for solar flares. Erupting flares were associated with their corresponding sunspot 

groups with McIntosh classifications. To increase the accuracy of prediction, a 

mathematical model representing the sunspot cycle based on the work of Hathaway et 

al. (1994), is implemented to automatically simulate the solar cycle. The simulated solar 

cycle and classified sunspots are converted to the appropriate numerical formats and 

used to train CCNN, RBFN and SVM machine learning systems, to predict 

automatically whether a significant flare will occur and whether it is going to be an X- 

or M-class flare.  

In this research, SVM provides the best results for predicting if a sunspot group 

with McIntosh classification is going to flare or not but CCNN is more capable of 

predicting the class of the flare to erupt. We have reached the conclusion that a hybrid 

system similar to the one shown in Figure 10, which combines both SVM and CCNN, 

will give better results for flare prediction. In this hybrid system, the inputs will be fed 

to SVM engine to decide if the sunspot group is going to produce a solar flare or not. 

Depending on the outcome of the SVM engine, CCNN is used to predict the type of the 

flare to erupt. 

We believe that this work is a first step toward constructing a fully automated and 

web-compliant platform that would provide short-term prediction for solar flares. In this 

paper, we managed to extract the experts’ knowledge which is embedded in the 

catalogues of flares and sunspots and managed to represent this knowledge using 

association and learning algorithms. However, the creation of an automated and 

objective system means that the system should be able to accept the latest solar images, 

detect solar features (i.e., sunspots, active regions, etc), provide the McIntosh 

classification for the detected features and then feed these classifications to our hybrid 
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system to obtain the short-term prediction for solar activities. This would require the use 

of advanced image processing techniques and we are currently working on this.  

Another future direction is to incorporate the findings of Ternullo et al. (2006) 

and modify our association software to extract the age of every associated sunspot. A 

flaring probability that increases with the age of this sunspot can be added to our input 

features. This could help in increasing the prediction performance even further. The 

association software can also be modified to study the development of flaring sunspots. 

Sunspots are dynamic objects and they evolve with time. Most of the existing prediction 

models don’t take this evolution into consideration when predicting flares (Wheatland, 

2004). A third direction is to combine the Mt Wilson classification of sunspots with 

McIntosh classification. This is inspired by the findings of Sammis et al. (2000), were it 

was proven that there is a general trend for large sunspots to produce large flares, but 

the most important factor is the magnetic properties of these sunspots. A serious 

problem facing these future directions is that the observations of sunspots are not made 

at fixed time intervals. We need to find a solution to this problem to improve the 

consistency of these data and make it more suitable for machine learning algorithms.  
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Figure 1: Parts from NGDC flare and sunspot catalogues for 02/Nov/2003showing an associated flare and 

sunspot region. 

 

Figure 2: Comparison of the actual and simulated ‘monthly average sunspot number’ between 01 Jan 

1992 and 31 Dec 2005. 

 

Figure 3: Comparison of CCNNs with different number of hidden nodes for CFP. 

 

Figure 4: Comparison of CCNNs with different number of nodes for CFTP. 

 

Figure 5: Comparison of SVM with different degree values. 

 

Figure 6: Comparison of SVM with different gamma values. 

 

Figure 7: Comparison of RBFN with different number of maximum hidden nodes. 

 

Figure 8: Graphical comparison of experiment results for Correct Flare Prediction (CFP) using different 

learning algorithms. 

 

Figure 9: Graphical comparison of experiment results for Correct Flare Type Prediction (CFTP) using 

different learning algorithms. 

 

Figure 10: Suggested hybrid flare prediction system. 

 

 

 

 

 

Table I:  Inputs and output values for initial machine training process.  

Inputs Outputs 

McIntosh classes 

A= 0.10 

H= 0.15 

B= 0.30 

C= 0.45 

D= 0.60 

E= 0.75 

F= 0.90 

X= 0 

R=0.10 

S=0.30 

A=0.50 

H=0.70 

K=0.90 

X=0 

O=0.10 

I=0.50 

C=0.90 

Flare 

=0.9 

 

No 

flare= 

0.1 

No/ 

M-class 

flare = 

0.1 

 

X-class 

Flare = 

0.9 
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Table II:  Inputs and output values for final machine training process.  

Inputs Outputs 

McIntosh classes 

A= 0.10 

H= 0.15 

B= 0.30 

C= 0.45 

D= 0.60 

E= 0.75 

F= 0.90 

X= 0 

R=0.10 

S=0.30 

A=0.50 

H=0.70 

K=0.90 

X=0 

O=0.10 

I=0.50 

C=0.90 

Normalized 

average 

sunspot 

number from 

Hathaway 

function 

Flare 

=0.9 

 

No 

flare= 

0.1 

No/ 

M-class 

flare = 

0.1 

 

X-class 

Flare = 

0.9 

 

 

Table III:  Some example input and output values used for machine training process: Data 1 is 

representing a  X-class flare detected on 02/Nov/2003 at 17:39 on NOAA region 10486 which is 

classified as EKC at 15:45. Data 2 is representing a M-class flare detected on 02/May/2003 at 02:47 on 

NOAA region 10345 which is classified as DAO at 00:45. Data 3 is representing NOAA region 7566 

which is classified as CSO at 08:40 and no corresponding flares detected at that day.  

Data 

no 
Inputs Outputs 

E K C Normalized sunspot number Flare X-class 
1 

0.75 0.90 0.90 0.145165 0.9 0.9 

D A O Normalized sunspot number Flare M-class 
2 

0.60 0.50 0.10 0.189032 0.9 0.1 

C S O Normalized sunspot number No flare No flare 
3 

0.45 0.30 0.10 0.100992 0.1 0.1 

 

Table IV:  Experiments and results using Jack-knife technique. (CFP= Correct Flare Prediction, CFTP= 

Correct Flare Type Prediction, TT=Training Time in seconds). 

  CCNN SVM RBFN  

Experiments TT. CFP CFTP  TT.  CFP CFTP  TT. CFP CFTP 

1 32.14 92.72 88.91 0.05 93.41 82.50 13.94 89.77 85.96 

2 31.83 93.07 88.39 0.03 94.28 83.54 13.41 89.95 85.44 

3 31.72 90.47 86.31 0.05 91.33 82.15 13.75 88.21 84.06 

4 31.94 93.24 89.43 0.03 93.07 81.98 13.92 90.64 86.83 

5 31.73 92.20 88.73 0.05 94.11 86.48 13.70 88.39 84.92 

6 31.75 90.12 85.96 0.02 93.07 84.40 13.34 89.25 85.10 

7 31.63 92.20 89.25 0.03 93.93 84.92 13.34 90.47 87.52 

8 32.00 91.85 88.91 0.06 93.93 84.92 13.38 90.47 87.52 

9 32.00 91.16 88.39 0.03 92.20 84.23 13.66 88.21 85.62 

10 31.78 88.91 85.96 0.05 91.33 82.15 13.66 89.08 85.96 

Average 31.85 91.59 88.02 0.04 93.07 83.73 13.61 89.45 85.89 

 

 

 


